Принципы руководства данными¶
Концепция и решаемые задачи¶
Концепция руководства данными (Data Governance – DG) описывает методы решения высокоуровневых стратегических задач бизнеса по работе с данными. Это процесс создания стратегии по управлению доступностью, целостностью и безопасностью данных компании на основе внутренних стандартов и правил.
Концепция Data Governance включает в себя:
Методики оценки данных как основных активов компании;
Способы организации процессов управления данными;
Способы создания политик/регламентов управления данными;
Разделение ролей специалистов в процессе руководстве данными;
Набор рекомендаций по осуществлению руководящих и контрольных полномочий над информационными активами.
Data Governance связана с идеями управления основными данными (Master Data Management – MDM). MDM описывает методы построения систем управления ключевыми данными, и включает в себя методы сбора и хранения данных из других систем, обеспечения качества данных и выдачи проверенных данных.
Все вышеперечисленные концепции могут быть реализованы в виде программных продуктов, позволяя бизнесу обслуживать корпоративные данные, анализировать их, снижая риски ошибок, формировать отчетность и автоматизировать процессы.
Решения класса DG и MDM могут работать параллельно и дополнять друг друга:
MDM решения выполняют исполнительную функцию, то есть позволяют организовать практическое управление данными: обеспечение качества, стандартизацию, валидацию, согласование изменений и т.д.;
DG решения выполняют надзорную функцию, то есть позволяют создавать требования к управлению данными и контролировать их исполнение: формировать бизнес-термины, связывать понятия бизнеса с технической реализацией ИТ-ландшафта, отслеживать потоки данных, определять требования к ведению MDM и т.п.
Решения класса DG предназначены для формирования подхода к практике руководства данными, позволяющей:
Оценить уровень зрелости управления данными и впоследствии поднять уровень;
Выделить ключевые цели и задачи управления данными;
Определить измеримые показатели качества данных;
Построить процессы управления данными;
Анализировать потоки данных и строить отчеты.
Первым шагом к руководству данными является классификация данных по информационным системам и сотрудникам (держателям данных), в тех разрезах, которые нужны компании. Иными словами, необходимо создать онтологию данных – систематизированное описание всех терминов предметной области, их свойств и отношений между ними, с учетом контекста применения терминов.
Онтология может создаваться разными способами. Один из самых распространенных способов с точки зрения бизнеса, это разделение данных по людям, то есть не простое классифицирование, а распределение данных по ролям и иерархиям. Например, у каждой должности – Chief Data Officer, Data Owner, Data Steward – есть своя область данных, за которую он отвечает.
Система Юниверс DG включает в себя основные решения по руководству данными и предоставляет инструменты для создания разрезов данных и моделирования информационной структуры онтологии данных, что позволяет удобно работать с определенными типами наборов данных (информационные системы, бизнес-термины, правила качества и т.д.).
Возможные виды работ с данными:
Создание, добавление, удаление данных и структуры данных;
Регламентация данных;
Связывание данных из разных наборов;
Поиск данных, их потоков и источников данных;
Анализ структуры данных, потоков данных и самих данных.
Сценарии работы системы класса DG¶
Таблица 1 – Варианты сценариев использования Юниверс DG
Сценарий |
Цель |
Роль |
---|---|---|
Создание бизнес-терминологии |
Полное описание данных |
Бизнес-пользователи:
|
Поиск данных в IT-ландшафте |
Поиск данных |
IT-ландшафт:
|
Сбор разрозненной информации в одном месте |
Получение нового набора данных, не пре дусмотренного в биз нес-системах, но необходимого для анализа |
IT-ландшафт:
|
Создание структуры данных |
Создание модели данных |
Информационная система:
|
Анализ происхождения данных |
Получение карты происхождения данных |
Информационная система со сложными запросами к данным:
|
Анализ качества данных |
Обеспечение качества данных |
Хранилище данных:
|
Типовой сценарий 1. Контроль защиты конфиденциальных данных
Описание:
Заданный в бизнес-правилах набор данных определяется как конфиденциальная информация, тогда как по отдельности данные из этого набора не конфиденциальны. Например, таким набором может служить информация о ключевых клиентах: личные данные, контакты, история заказов, персональные скидки.
Конфиденциальные данные хранятся в отдельной базе данных. Различные службы бизнеса отправляют запросы к базе конфиденциальных данных на получение отдельных данных. К примеру, служба доставки запрашивает только имя, адрес и список товаров на складе.
Так как бизнес крупный, и используется множество различных по назначению и реализации систем, существует опасность утечки данных. Подобные ситуации возникают, когда ответы на запросы скапливаются в незащищенном месте ИТ-ландшафта. Например, в логах одной из систем.
Юниверс DG позволяет идентифицировать, где еще встречаются наборы конфиденциальных данных, и, при необходимости, отслеживать полный путь технического размещения данных: выяснять происхождение данных и взаимосвязи между другими источниками, определять инициатора изменений на каждом этапе движения и т.п. С помощью этого возможно устранение недостатков в безопасности.
Рисунок 1 – Выявление незащищенных конфиденциальных данных
На схеме выше представлен пример выявления незащищенных конфиденциальных данных. Бизнес-правила определяют, что объект «физическое лицо» с атрибутами ФИО, Адрес, Клиент – конфиденциальные данные. Разные системы запрашивают либо адрес, либо ФИО по отдельности, однако в подразделении логистики атрибуты физического лица собираются снова. При этом, в логах БД конфиденциальные данные оказываются незащищенными, что является угрозой.
Типовой сценарий 2. Работа с отчетами
Проблемы с отчетностью могут возникать по различным причинам. Вот некоторые из них:
Несогласованность данных внутри нескольких информационных систем компании, в случае полной автономности подразделений. Например, когда производство отделено от логистики.
Изменившиеся требования регуляторов.
Поглощение бизнеса и связанные с поглощением различия в понимании бизнес-терминов и ключевых показателей.
Проблемы агрегации различных единиц измерения.
Необходимость в единых и достоверных источниках данных и едином понимании всех бизнес-терминов для создания новых отчетов.
Юниверс DG объединяет все существующие модели данных в одну единую модель, на основе которой закрываются все конфликты в единицах измерения, бизнес-терминах и т.п. При изменении условий или требований к данным вносятся корректировки в единую модель данных, что автоматически переносится ниже по структуре данных. Решения класса DG покрывают три основных сценария работы с отчетностью:
Корректировка существующих отчетов. Доступно быстрое изменение единой модели под новые требования, унификация данных, проверка данных в разных системах и поиск ошибок.
Создание новых отчетов. DG решает проблему поиска актуальных данных и связывания данных с основными понятиями бизнеса. Новые отчеты собираются из существующих данных. Для новых отчетов могут использоваться готовые наборы данных, описанные в бизнес-терминах или бизнес-правилах.
Транслирование новых требований к отчетности и контроль фактического исполнения отчетов в каждой конкретной информационной системе. Требования отправляются подразделениям бизнеса в виде бизнес-терминов. Подразделения формируют локальные отчеты, за реализацией которой можно следить.
Рисунок 2 – Регулирование отчетности годовой прибыли
На схеме выше представлен пример регулирования отчетности годовой прибыли. От регионального подразделения 1 приходит отчет о годовой прибыли, который по результатам анализа и сравнения с устоявшимися критериями бизнеса содержит данные только о годовой выручке. Отчет регионального подразделения 2 содержит как данные о годовой выручке, так и об издержках. Так как два отчета расходятся в базовом понимании бизнес-термина «Отчет о годовой прибыли», то необходимо регулирование этого понятия, что повлечет за собой корректировку одного из отчетов.